

ICTM Value: 3.00

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

APPROPRIATENESS EVALUATION OF TURBO MATCHING OF A58N70 AND A58N75 TURBOCHARGERS WITH COMMERCIAL VEHICLE ENGINE

Badal Dev Roy *1, Dr. R. Saravanan 2

- *1 Research Scholar, Department of Mechanical Engineering, School of Engineering, Vels Institute of Science Technology & Advanced Studies (VISTAS), Vels University, Chennai, TN, India.
 - ² Research Supervisor, Professor (Mechanical) & Principal, Ellenki Institute of Engineering and Technology, Jawaharlal Nehru Technological University, Hyderabad, TS, India.

DOI: 10.5281/zenodo.1066208

ABSTRACT

High density charged boosting for commercial vehicles at higher load is utmost requirement. Turbocharger is such charge booster for automotive engines. Proper selection of turbocharger can avoid disadvantages of surge, choke in the charge flow to engine. apart from many methods this research preferred the On-Road test type matching for evaluation. The initial matching performance carried by the simulation. The validation of simulated solution for turbo matching performance is through Data-Logger method. The objective this research is to evaluate the appropriateness of turbo matching of A58N70 and A58N75 turbocharger for the TATA 497 TCIC -BS III engine for suggesting best one. The compressor map is used comparing solution by methods. In the data logger method the road conditions like rough, highway, city drive, slope up and slope down were considered for vehicle operations.

KEYWORDS: Turbocharger, turbo-matching, Choke, Surge, Data-logger, Simulation .

I. INTRODUCTION

Turbo charger is an accessory in the IC engines to boost pressure, especially at higher loads. Turbo charger also helps to reduce specific fuel consumption (SFC), downsizing the engine, reduce CO2 emission, etc.[1]-[5]. Due to the character of centrifugal compressor, the turbocharged engine yields lesser torque than naturally aspirated engine at lower speeds [6],[7]. Comparatively in diesel engine these problems very worse than petrol engine. Some of the system designs were made to mange this problem. They are: adopting the sequential system [8], incorporate the limiting fuel system, reducing the inertia, improvements in bearing, modification on aerodynamics [9], establishing electrically supported turbocharger [10], the use of positive displacement charger i.e., secondary charging system and use of either electric compressor or positive displacement charger with turbocharger [10],[11] facilitating the geometrical variation on the compressor and turbine [12], adopting the twin turbo system [13], and dual stage system [14]. It is noticed that the transient condition is always worst with the engine which adopted single stage turbo charger. The variable geometry turbine was introduced for reducing the turbo lag in petrol as well as diesel engines. But the system is not exact match for petrol engines [15]. Even though many research were done on this case still the problem is exist. [12],[15]-[18]. Though the advancements in system design like variable geometry turbine, common rail injection system, and multiple injections, the problem is still persist due to the limiting parameter say supply of air. [19] discussed in detail about the benefits, limitations of turbo charger in single stage, parallel and series arrangements. According to the literature the turbocharger matching is a tedious job and demands enormous skill. The turbo matching can be defined as a task of selection of turbine and compressor for the specific brand of engine to meet its boosting requirements. That is, their combination to be optimized at full load. The trial and error method cannot be adopted in this case because the matching is directly effects as well as affects the engine performance [5],[20],[21]. So it is difficult task and to be worked out preciously. If one chooses the trial and error or non precious method, it will certainly lead to lower power output at low speeds for partly loaded engines for the case of two stage turbo charger. It is because of the availability of a very low pressure ratio after every stage than single stage [21]. Some cases the turbocharger characteristics are not readily available, and in some cases, not reliable or influenced by the engine which is to be matched [19]. Nowadays the Simulator is used for matching

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

the turbocharger to the desired engine. The simulator was used to examine the performance at constant speed of 2000 rpm of two stage and single stage turbo chargers, the aim of the study was to optimize the high load limit in the Homogeneous charge compression ignition engine. For increasing the accuracy of matching the test bench method is evolved. Test bench was developed and turbo mapping constructed for various speeds to match the turbocharger for the IC engine by Leufven and Eriksson, but it is a drawn out process [21]. The on road test type investigation is called Data Logger based Matching method is adopted in this research. [22] discussed the data-logger turbocharger matching method in detail and compared with the result of test best method and simulator based matching method. And proved the data logger method outputs are reliable. By use of the data logger method the performance match can be evaluated with respect to various speeds as well as various road conditions. The core objective of this research is investigating the appropriateness of matching of the turbocharger with A58N70 and A58N75 for the TATA 497 TCIC -BS III Engine by simulation method. The validation of the same by Data Logger method.

II. MATERIALS AND METHODS

A logical science of combining the quality of turbocharger and engine and which is used to optimize the performance in specific operating range is called as turbo-matching. The Simulator method, data-logger method and Test Bed method is identified for this matching. Apart from the above three this research used the Simulator method and data-logger method for evaluating the performance of turbo matching. The trim size is a parameter, which can be obtained from the manufacture data directly or by simple calculation. That is the trim size is a ratio of diameters of the inducer to exducer in percentage. This parameter is closely related to the turbo matching. Various trim sizes are available, but in this study the trim size 70 and 75 are considered for investigation.

A. Simulator based matchin

Various kinds of simulation software are being used for turbo matching. In this research the minimatch V10.5 software employed for turbo-matching by simulation. The manufacturer data of the engine and turbocharger are enough to find the matching performance by simulation. The manufacturer data are like turbo configuration, displacement, engine speed, boost pressure, inter cooler pressure drop and effectiveness, turbine and compressor efficiency, turbine expansion ratio etc. The software simulates and gives the particulars of the operating conditions like pressure, mass flow rate, SFC, required power etc. at various speeds. These values are to be marked on the compressor map to know the matching performances. The compressor map is a plot which is used for matching the engine and turbocharger for better compressor efficiency by knowing the position of engine operating points. Based on the position of points and curve join those points the performance of matching will be decided.

B. Data logger based matching

This type of data collection and matching is like on road test of the vehicle. This setup is available in the vehicle with the provision of placing engine with turbocharger and connecting sensors. It is a real time field data gathering instrument called as Data-logger. It is a computer aided digital data recorder which records the operating condition of the engine and turbo during the road test. The inputs are gathering from various parts of engine and turbo charger by sensors. The Graphtec make data logger is employed in this work. It is a computerized monitoring of the various process parameters by means of sensors and sophisticated instruments. The captured data are stored in the system and plot the operating points on the compressor map (plot of pressure ratio versus mass flow rate). The Fig. 1 depicts the setup for the data-logger testing in which the turbocharger is highlighted with red circle.

C. Decision making

The decision making process is based on the position of the operating points on the compressor map. The map has a curved region like an expanded hairpin, in which the left extreme region is called surge region. The operating points fall on the curve or beyond, is said to be occurrence of the surge. That means the mass flow rate limit below the compressor limit. This causes a risk of flow reversal. The right extreme region curve is called as Choke region. The points fall on the curve and beyond its right side is denoted as the occurrence of choke. In the

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

choke region the upper mass flow limit above compressor capacity, which causes the quick fall of compressor efficiency, Chances for compressor end oil leakage and insufficient air supply. The all operating points fall in between those extreme regions i.e., the heart region holds good. It must be ensured at all levels of operation of the engine holds good with the turbocharger. The manufacturer of Turbocharger provides the compressor map for each turbo charger based on its specifications.

D. Engine specifications

Table -1: Specification of Engine

The

S.No	Description	Specifications		
1	Fuel Injection Pump	Electronic rotary type		
2	Engine Rating	92 KW (125 PS)@2400 rpm		
3	Torque	400 Nm @1300-1500rpm		
4	No. of Cylinders	4 Cylinders in-line water cooled		
5	Engine type	DI Diesel Engine		
6	Engine Bore / Engine Stroke	97 mm/128mm.		
7	Engine speed	2400 rpm (Max power), 1400 rpm (Max Torque)		

TATA 497 TCIC -BS III engine is a common rail type diesel engine. It is commonly used for medium type commercial vehicle like Tata Ultra 912 & Tata Ultra 812 trucks. The engine develops 123.29 BHP at 2,400 rpm and also develops the peak torque of 400 Nm between 1,300 and 1,800 rpm. The other specifications can be found in Table 1.

E. Turbochargers specifications

The TATA Short Haulage Truck, turbochargers of A58N70 and A58N75 are considered to examine the performance of matching for TATA 497 TCIC -BS III engine. For example, if specification A58N70 means in which the A58 is the design code and N70 is the Trim size in Percentage. The other specification is furnished in the Table 2.

S.No	Description	A58N70 A58N75		
1	Turbo maximum Speed	200000 rpm		
2	Turbo Make	HOLSET		
3	Turbo Type	WGT-IC (Waste gated Type with Intercooler)		
4	Trim Size (%)	70 75		
5	Inducer Diameter	48.6mm	52.50 mm	
6	Exducer Diameter	69.4mm	70.00mm	

Table - 2: Specification of Turbo Chargers

III. EXPERIMENTAL OBSERVATION

The simulator and data-logger method is adopted to match the turbo Chargers A58N70 and A58N75 for TATA 497 TCIC -BS III engine. The matching performance can be obtained in the simulator by feeding necessary data from the manufacturer catalogue. The simulator simulates and presented the values of pressure ratio and mass flow rate at various speeds as measure of performances for identifying the matching performance of the turbo-charger for desired combination. The simulated observation presented in the Table 3. In data-logger method the turbo-charger is connected to the TATA 497 TCIC -BS III Engine of TATA 1109 TRUCK with sensors. The vehicle loaded to rated capacity 7.4 tonnes of net weight. The grass weight of vehicle is 11 tonnes. The experimental setup is shown in the Fig. I. The range of speeds preferred for observations including the maximum and minimum speeds are: 1000, 1400, 1800 and 2400 rpm. The observations tabulated from Table 4 to Table 8 for the road conditions rough, highway, city drive, slope u and slope down respectively.

ICTM Value: 3.00

ISSN: 2277-9655

CODEN: IJESS7

Impact Factor: 4.116

Figure: 1 Experimental set up of Data-Logger method

Table-3: Simulated observations for A58N70 and A58N75 Turbo matching

S.No	Engine	Mass Flow Rate (Kg/sec.sqrt K/Mpa)		Pressure Ratio	
3.100	Speed (rpm)	A58N70	A58N75	A58N70	A58N75
1	1000	09.534	14.23	1.856	1.288
2	1400	20.186	25.936	3.042	2.696
3	1800	27.958	34.568	3.548	3.388
4	2400	35.488	38.456	3.764	3.625

Table -4: Data-logger - Rough Road Route observations

S.No	Engine Speed	Mass Flow Rate (Kg/sec.sqrt K/Mpa)		Pressure Ratio	
3.110	(rpm)	A58N70	A58N75	A58N70	A58N75
1	1000	8.43	10.46	1.29	0.84
2	1400	16.27	18.45	1.9	1.7
3	1800	23.87	26.84	2.29	2.17
4	2400	28.49	30.82	2.51	2.32

Table- 5: Data-logger - Highway Route observations

S.No	Engine Speed	Mass Flow Rate (Kg/sec.sqrt K/Mpa)		Pressure Ratio	
3.110	(rpm)	A58N70	A58N75	A58N70	A58N75
1	1000	8.52	10.52	1.31	0.84
2	1400	16.39	18.51	1.87	1.7
3	1800	23.94	26.89	2.3	2.17
4	2400	28.91	30.85	2.51	2.32

Table- 6: Data-logger – City Drive observations

S.No	Engine	Mass Flow Rate (Kg/sec.sqrt K/Mpa)		Pressure Ratio	
5.110	Speed (rpm)	A58N70	A58N75	A58N70	A58N75
1	1000	8.49	10.58	1.32	0.88
2	1400	16.31	18.54	1.95	1.76
3	1800	23.78	26.93	2.33	2.19
4	2400	28.37	30.91	2.56	2.36

Impact Factor: 4.116 ICTM Value: 3.00 **CODEN: IJESS7**

Table-7: Data-logger – Slope –Up observations

S.No	Engine Speed	Mass Flow Rate (Kg/sec. sqrt K/Mpa)		Pressure Ratio	
5.110	(rpm)	A58N70	A58N75	A58N70	A58N75
1	1000	8.58	10.62	1.31	0.88
2	1400	16.34	18.6	2.00	1.79
3	1800	23.98	26.98	2.37	2.19
4	2400	28.98	30.95	2.58	2.39

Table- 8: Data-logger - Slope -Down observation

S.No	Engine	Mass Flow Rate (Kg/sec.sqrt K/Mpa)		Pressure Ratio	
3.110	Speed (rpm)	A58N70	A58N75	A58N70	A58N75
1	1000	8.47	10.37	1.30	0.81
2	1400	16.32	18.42	1.95	1.68
3	1800	23.89	26.53	2.31	2.16
4	2400	28.42	30.67	2.5	2.30

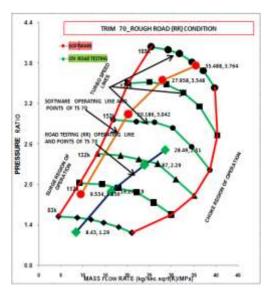


Figure: 2 A58N70 Turbo-match-Rough Road

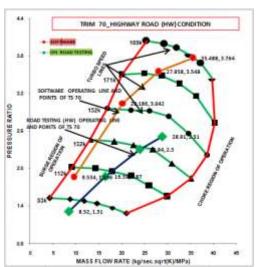
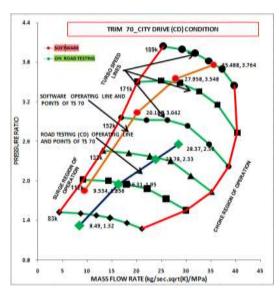
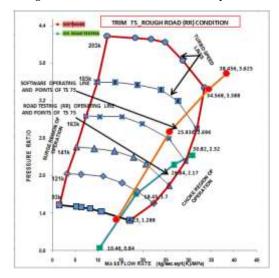




Figure: 4 A58N70 Turbo-match-Highway

ISSN: 2277-9655

A58N70 Turbo-match- City Drive Figure: 6

A58N75 Turbo-match -Rough Road Figure:3

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

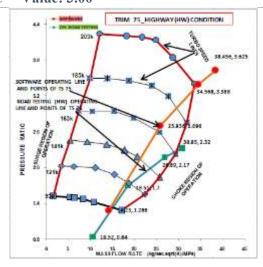


Figure: 5 A58N75 Turbo-match- Highway

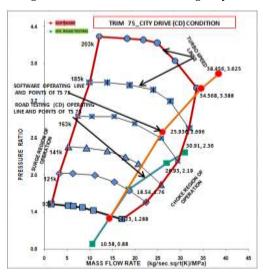


Figure: 7 A58N75 Turbo-match – City Drive

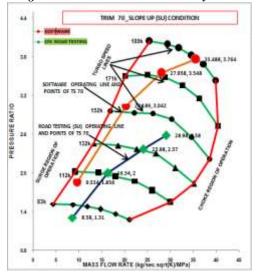


Figure: 8 A58N70 Turbo-match- Slope-up

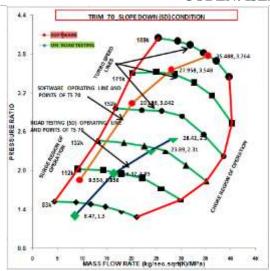


Figure: 10 A58N70 Turbo-match-Slope-Down

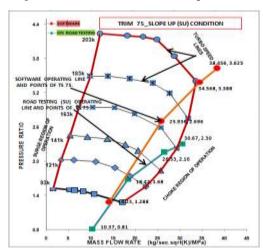


Figure: 9 A58N75 Turbo-match- Slope-Up

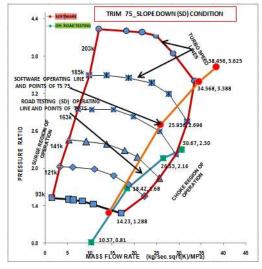


Figure: 11 A58N75 Turbo-match -Slope Down

IC™ Value: 3.00

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

IV. RESULTS AND DISCUSSIONS

The observation of operating conditions obtained at various speeds at various vehicle routes and simulated for the matching for each turbo charger with engine. The turbo- matching appropriateness can be found when these observations marked on the respective compressor map. Here the compressor maps provided as self explanatory graphs. The simulated matching and road condition wise data logger matching performances furnished together for easy evaluation. The Fig. 2 and Fig. 3 are for Rough route for turbo Chargers A58N70 and A58N75 turbocharger respectively. Similarly Fig. 4 and Fig. 5 for Highway route and Fig. 6 and Fig. 7 for City Drive, Fig. 8 and Fig. 9 for Slope Up and similarly Fig.10 and Fig.11 are for Slope Down. From the observations it is found that the simulated values are higher than the data logger values but pattern of variation of values with respect to speeds are similar. This can be noted that the turbo-match A58N75 at higher speeds moves towards choke region which decreases the compressor performance but at lower speed the matching performance is safe. But the A58N70 turbo match it was found in both methods that operating conditions are satisfied at all the range of speeds away from surge and choke irrespective of routes the vehicle operated

V. CONCLUSION

The turbo-matching of A58N70 turbocharger and A58N75 turbocharger for TATA 497 TCIC -BS III engine is discussed. In the appropriateness evaluation the turbo-match with A58N70 turbo charger is safe and good performance. But the turbo match with A58N75 turbo charger choke occurs at higher speeds (above 2200 rpm approximately). The decrease of maximum engine speed can provide the opportunity for adapting the A58N75 turbo charger. Apart from two choice the A58N70 turbo charger is best choice for TATA 497 TCIC -BS III engine. The data-logger method adapted in this research may feel as expensive but it is one time job of finding the best turbo-match for an engine category.

VI. REFERENCES

- [1] G.Cantore, E.Mattarelli, and S.Fontanesi, "A New Concept of Supercharging Applied to High Speed DI Diesel Engines," SAE Technical Paper 2001-01-2485, 2001, pp.1-17, doi:10.4271/2001-01-2485, 2001.
- [2] L.Guzzella, U.Wenger, and R.Martin, "IC-Engine Downsizing and Pressure-Wave Supercharging for Fuel Economy," SAE Technical Paper 2000-01-1019, 2000, pp.1-7, doi:10.4271/2000-01-1019, 2000.
- [3] B. Lecointe and G.Monnier, "Downsizing a Gasoline Engine Using Turbocharging with Direct Injection," SAE Technical Paper 2003-01-0542, 2003, pp.1-12, doi:10.4271/2003-01-0542, 2003.
- [4] S.Saulnier and S.Guilain, "Computational Study of Diesel Engine Downsizing Using Two-StageTurbocharging," SAE Technical Paper 2004-01-0929, 2004, pp.1-9, doi:10.4271/2004-01-0929, 2004.
- [5] T.Lake, J.Stokes, R.Murphy and R.Osborne, "Turbocharging Concepts for Downsized DI Gasoline Engines," SAE Technical Paper 2004-01-0036, 2004, pp.1-13, doi:10.4271/2004-01-0036, 2004.
- [6] W.Attard, H.Watson, S.Konidaris and M.Khan, "Comparing the Performance and Limitations of a Downsized Formula SAE Engine in Normally Aspirated, Supercharged and Turbocharged Modes," SAE Technical Paper 2006-32-0072, 2006, pp.1-22, doi:10.4271/2006-32-0072, 2006.
- [7] A.Lefebvre and S.Guilain, "Modelling and Measurement of the Transient Response of a Turbocharged SI Engine," SAE Technical Paper 2005-01-0691, 2005, doi:10.4271/2005-01-0691, 2005, pp.1-15.
- [8] S.Tashima, H.Okimoto, Y.Fujimoto, and M.Nakao, "Sequential Twin Turbocharged Rotary Engine of the Latest RX-7," SAE Technical Paper 941030, 1994, doi:10.4271/941030,1994, pp.1-10.
- [9] T.Watanabe, T.Koike, H.Furukawa, N.Ikeya, "Development of Turbocharger for Improving Passenger Car Acceleration," SAE Technical Paper 960018, 1996, doi:10.4271/960018, 1996, pp.1-9.
- [10] T.Kattwinkel, R.Weiss and J.Boeschlin, "Mechatronic Solution for Electronic Turbocharger," SAE Technical Paper 2003-01-0712, 2003, pp.1-8, doi:10.4271/2003-01-0712, 2003.
- [11] N.Ueda, N.Matsuda, M.Kamata, H.Sakai, "Proposal of New Supercharging System for Heavy Duty Vehicular Diesel and Simulation Results of Transient Characteristics," SAE Technical Paper 2001-01-0277, 2001, pp.1-9, doi:10.4271/2001-01-0277, 2001.
- [12] J.Kawaguchi, K.Adachi, S.Kono and T.Kawakami, "Development of VFT (Variable Flow Turbocharger)," SAE Technical Paper 1999-01-1242, 1999, doi:10.4271/1999-01-1242, 1999, pp.1-8.
- [13] C.Cantemir, "Twin Turbo Strategy Operation," SAE Technical Paper 2001-01-0666, 2001, doi:10.4271/2001-01-0666, 2001, pp.1-11.

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

- [14] C.Choi, S.Kwon and S.Cho, "Development of Fuel Consumption of Passenger Diesel Engine with 2 Stage Turbocharger," SAE Technical Paper 2006-01-0021, 2006, doi:10.4271/2006-01-0021, 2006, pp.1-9.
- [15] J.Andersen, E.Karlsson and A.Gawell, "Variable Turbine Geometry on SI Engines," SAE Technical Paper 2006-01-0020, 2006, doi:10.4271/2006-01-0020, 2006, pp.1-15.
- [16] Z.Filipi, Y.Wang and D.Assanis, "Effect of Variable Geometry Turbine (VGT) on Diesel Engine and Vehicle System Transient Response," SAE Technical Paper 2001-01-1247, 2001, pp.1-21, doi:10.4271/2001-01-1247, 2001.
- [17] C.Brace, A.Cox, J.Hawley and N.Vaughan, et al., "Transient Investigation of Two Variable Geometry Turbochargers for Passenger Vehicle Diesel Engines," SAE Technical Paper 1999-01-1241, 1999, doi:10.4271/1999-01-1241, 1999, pp.1-17.
- [18] S.Arnold, M.Groskreutz, S.Shahed and K.Slupski, "Advanced Variable Geometry Turbocharger for Diesel Engine Applications," SAE Technical Paper 2002-01-0161, 2002, pp. 1-12, doi:10.4271/2002-01-0161, 2002.
- [19] Qingning Zhang, Andrew Pennycott, Chris J Brace, 'A review of parallel and series turbocharging for the diesel engine' Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. Volume: 227 issue: 12, Sep. 2013, pp. 1723-1733. https://doi.org/10.1177/0954407013492108.
- [20] F.Millo, ,F.Mallamo and G.Mego, , "The Potential of Dual Stage Turbocharging and Miller Cycle for HD Diesel Engines," SAE Technical Paper 2005-01-0221, 2005, pp. 1-12,
- [21] N.Watson and M.S.Janota, Wiley-Interscience Ed. "Turbocharging the internal combustion engine,", Diesel motor 1982, 608 pages.
- [22] Badal Dev Roy, R.Saravanan, R.Pugazhenthi and M.Chandrasekaran, "Experimental Investigation of Turbocharger Mapped by Data-logger in I.C. Engine" ARPN Journal of Engineering and Applied Sciences, 11 (7), April 2016, pp. 4587 4595.